
Geometry Distributions

Supplementary Material

loong

jellyfish

warrior

archer

lion

WuKong
mouse

Archimedes

Parthenon
jacket

lamp

table

Figure 15. The ground-truth geometries for the shapes shown in Fig. 1.

name mesh stats

vtx
(K)

face
(K)

disk storage
(Mb)

WuKong 19226 6408 878
Archimedes 6162 2054 276

loong 3956 1318 176
jellyfish 3908 1302 178
mouse 793 1423 58
archer 710 1420 58
lamp 478 159 21

warrior 433 866 35
lion 303 606 24

jacket 146 49 11
city 249 83 11

Parthenon 117 39 5
valley 74 37 6
Spot 3.2 5.8 0.37
table 0.82 0.73 0.07

Table A.1. We report the mesh complexity and storage cost for
the experimented shapes. Unless explicitly mentioned in the ta-
ble, the shapes can be found in Fig. 15.

A. Additional results

Fig. 16 extends Fig. 2, demonstrating that our approach
generates more uniformly distributed samples with higher
fidelity across different resolutions, compared to the vec-
tor field-based method. Fig. 18 (an extension of Tab. 3c),
and Fig. 17 (an extension of Fig. 13), provide error

Figure 16. Additional results on comparison to vector fields-
based method (extension of Fig. 2), our GEOMDIST produces
more uniformly distributed samples with higher fidelity. Top:
vector fields. Bottom: ours. From left to right, we show results
of 10 thousands, 100 thousands and 1 million points.

visualization of L2 distance to surface, demonstrating
how the sampling steps affect the forward sampling and
inverse sampling, respectively, for geometry recovery.
In Fig. 19 and Fig. 20, we show additional results of
using our method to represent textured geometry and
high-resolution scene. In Fig. 21 we show additional re-

1

N = 4

ē = 0.725

N = 8

ē = 0.211

N = 16

ē = 0.044

N = 64

ē = 0.0007

0

1

Figure 17. Top: the recovered shape from inversion E → D(x)
using different number of inverse sampling steps as in Eq. (4).
Bottom: we color the per-sample error of the inversion on the
original shape and report the average error ē (L2 distance to the
surface).

0

0.05

N = 8 N = 64 ground-truth

Figure 18. Errors (L2 distance to the surface) of 1 million points
using different number of sampling steps N as in Eq. (3). Left:
N = 8. Middle: N = 64. Right: ground-truth mesh. The per-
point color is visualized according to the error (l2 distance to the
ground-truth surface). The results of N = 16 and N = 32 are
very close as shown in Tab. 3c, thus are omitted here.

sults to justify the inversion process discussed in Sec. 3.2
and Sec. 4.4: we composite inverse sampling and forward
sampling from different surfaces, yet still obtain expected
results. Specifically, the composed sampling process al-
lows us to transform the WuKong shape into a jellyfish,
lamp, sphere, or a plane. In Tab. A.1 we report the mesh
complexity of the experimented shapes.

B. Implementation details

B.1. Mesh normalization

We normalize all the meshes using the following pseudo-
code. First, we sample 10 million points on the surface.
Next, we shift and scale the mesh based on the mean and
standard deviation of the sampled points. As a result,
the surface points are approximately centered around zero
with unit variance. We found that this normalization is
effective in stabilizing the training process.

Figure 19. Applications on textured geometries. The setup is the
same with Fig. 9. Top: ground-truth. Bottom: ours.

Figure 20. Results on city. Top: ground-truth. Bottom: ours.

1 points, _ = trimesh.sample.sample_surface(mesh,

10000000)

2 mesh.vertices -= points.mean()

2

3 mesh.vertices /= points.std()

B.2. Uniform distribution

When using uniform distribution as the initial noise in dif-
fusion models (e.g., see Fig. 4), we scale the samples from
uniform distribution to have zero mean and unit variance.

1 n = (torch.rand_like(x) - 0.5) / np.sqrt(1/12)

B.3. Chamfer distance

We use Chamfer distance to measure the distance between
samples from our Geometry distribution, Xgen, and the
samples from ground-truth surface, Xref, to quantify the
accuracy. This is defined as:

ChamferDist(Xref,Xgen) =
1

|Xref|
∑

a→Xref

min
b→Xgen

→a↑ b→2 +

1

|Xgen|
∑

b→Xgen

min
a→Xref

→a↑ b→2 .

The python code for calculating the Chamfer distance is
as follows:

1 # prediction: B x 3

2 # reference: B x 3

3 from scipy.spatial import cKDTree as KDTree

4 tree = KDTree(prediction)

5 dist, _ = tree.query(reference)

6 d1 = dist

7 gt_to_gen_chamfer = np.mean(dist)

8 gt_to_gen_chamfer_sq = np.mean(np.square(dist))

9

10 tree = KDTree(reference)

11 dist, _ = tree.query(prediction)

12 d2 = dist

13 gen_to_gt_chamfer = np.mean(dist)

14 gen_to_gt_chamfer_sq = np.mean(np.square(dist))

15

16 cd = gt_to_gen_chamfer + gen_to_gt_chamfer

B.4. Sampling algorithm

We show the sampling algorithm (Algorithm 2) proposed
in EDM [19] for completeness.
Algorithm 2 Sampling

1: procedure SAMPLING(x, ti→{0,...,N})
2: x0 = t0n where n ↓ N (0,1)
3: for i ↔ {0, 1, . . . , N ↑ 1} do

4: di = (xi ↑Dω(xi, ti)) /ti
5: xi+1 = xi + (ti+1 ↑ ti) · di

6: end for

7: end procedure

B.5. Networks

The forward passes of the middle blocks and final block
(illustrated in Fig. 6) are implemented as follows:

1 # x: B x C

2 # t: B x C

3 # middle block

4 c = emb_mp_linear(t, gain=emb_gain) + 1

5 x = normalize(x)

6 res = x_pre_mp_linear(mp_silu(x))

7 res = mp_silu(res * c.to(y.dtype))

8 res = x_post_mp_linear(res)

9 x = mp_sum(x, res, t=0.3)

1 # x: B x C

2 # t: B x C

3 # final block

4 c = emb_mp_linear(t, gain=final_emb_gain) + 1

5 x = x_pre_mp_linear(mp_silu(normalize(x)))

6 x = mp_silu(x * c.to(y.dtype))

7 out = x_post_mp_linear(x, gain=final_out_gain)

B.6. Vector fields

The vector fields are coordinate-based networks which
outputs vectors pointing towards to the surface. We use
Libigl library [17] to process the data.

1 # p: B x 3

2 p = np.random.randn(B, 3)

3 v, f = igl.read_triangle_mesh(obj_path)

4 d, _, c = igl.point_mesh_squared_distance(p, v,

f)

5 unsigned_distances = np.sqrt(d) # B

6 vectors = c - p # B x 3

B.7. Color fields

We use the hashing grids proposed by Instant-NGP to im-
plement the color field network in Fig. 10. The implemen-
tation is from the official github repository.

1 encoder_config = """{

2 "otype": "HashGrid",

3 "n_levels": 16,

4 "n_features_per_level": 2,

5 "log2_hashmap_size": 19,

6 "base_resolution": 16,

7 }"""

8

9

10 network_config = """{

11 "otype": "FullyFusedMLP",

12 "activation": "ReLU",

13 "output_activation": "Sigmoid",

14 "n_neurons": 64,

15 "n_hidden_layers": 2

16 }"""

17

18 class ColorField(nn.Module):

19 def __init__(self):

20 super().__init__()

21 self.encoding = tcnn.Encoding(

n_input_dims=3, encoding_config=json.loads(

encoder_config))

22 self.network = tcnn.Network(

n_input_dims=self.encoding.n_output_dims,

n_output_dims=3, network_config=json.loads(

network_config))

23

3

24 def forward(self, x):

25 x = self.encoding(x)

26 x = self.network(x)

27 return x

We optimize L1-loss between the predicted and ground-
truth colors. The training takes around 3 minutes. When
the training is done, we can query colors for all spatial
points,

ColorField(x) = c. (B.1)

The colors in Fig. 10 are obtained by ColorField(E(n))
where n ↓ N (0,1).

4

D0
→1

D1

D2

D3

D4

X0

D1 (N0)

D2 (N0)

D3 (N0)

D4 (N0)

N0 = D0
→1 (X0)

Figure 21. We denote the trained diffusion networks that map from a Gaussian distribution to the Wukong, jellyfish, lamp, sphere, and
plane mesh as D0,D1,D2,D3,D4, respectively. We sample 1 million points from the WuKong mesh, denoting these samples as X0.
Applying the inversion we obtain N0 = D0

→1 (X0). In the leftmost column, we show the samples D1(N0),D2(N0),D3(N0),D4(N0),
which closely approximate the original shapes, demonstrating the accuracy of our trained diffusion nets. For D0

→1, we show results at
timesteps 0, 10, 15, 20, 25, 30, 64 aligned from left to right. For D1,D2,D3,D4 we show results at timesteps 30, 40, 45, 48, 52, 55, 64,
aligned from right to left.

5

	Introduction
	Related Works
	Different representations for 3D geometry
	Diffusion models
	Coordinate-based neural representations
	Point-based graphics

	Geometry Distributions
	Problem formulation & motivations
	Inference process: forward & inverse sampling
	Training process & network design

	Experiments
	Implementation
	Applications
	Ablation studies
	Inversion

	Conclusion
	Additional results
	Implementation details
	Mesh normalization
	Uniform distribution
	Chamfer distance
	Sampling algorithm
	Networks
	Vector fields
	Color fields

